Abstract

We describe two efficient methods of estimating the fluid permeability of standard models of porous media by using the statistics of continuous Brownian motion paths that initiate outside a sample and terminate on contacting the porous sample. The first method associates the “penetration depth” with a specific property of the Brownian paths, then uses the standard relation between penetration depth and permeability to calculate the latter. The second method uses Brownian paths to calculate an effective capacitance for the sample, then relates the capacitance, via angle-averaging theorems, to the translational hydrodynamic friction of the sample. Finally, a result of Felderhof is used to relate the latter quantity to the permeability of the sample. We find that the penetration depth method is highly accurate in predicting permeability of porous material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.