Abstract

This paper proposes a new range equation for hybrid-electric aircraft. The paper revisits the theory of the range equation for a hybrid-electric aircraft with constant power split published earlier in the literature and proposes a new efficiency-based definition of the degree of hybridization (φ), one which includes the efficiencies of the electric or fuel-powered drivetrain. The paper shows that the efficiencies of the respective drivetrains play a significant role in the range estimation of the hybrid-electric aircraft. The paper makes use of a case study to show the relationship between battery energy density, powertrain efficiency and modification in the definition of the degree of hybridization φ with aircraft range. We show that for every aircraft design, there is a battery energy density threshold, for which the aircraft range becomes independent of the degree of hybridization. Below this threshold, the range decreases with an increase in the degree of hybridization. Conversely, beyond this threshold, the aircraft range increases with the degree of hybridization. Our study finds that the new definition of φ has shifted this threshold significantly upwards compared to earlier publications in the literature. This makes the design of an aircraft with a high degree of hybridization less optimistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.