Abstract

A model for the generation of neural connections at birth led to the study of W, a random, symmetric, nonnegative definite linear operator defined on a finite, but very large, dimensional Euclidean space [1]. A limit law, as the dimension increases, on the eigenvalue spectrum of W was proven, implying that realizations of W (being identified with organisms in a species) appear totally different on the microscopic level and yet have almost identical spectral densities. The present paper considers the eigenvectors of W. Evidence is given to support the conjecture that, contrary to the deterministic aspect of the eigenvalues, the eigenvectors behave in a completely chaotic manner, which is described in terms of the normalized uniform (Haar) measure on the group of orthogonal transformations on a finite dimensional space. The validity of the conjecture would imply a tabula rasa property on the ensemble (“species”) of all realizations of W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.