Abstract

AbstractIt is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value . This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.