Abstract
Quivers over a fixed base set form a monoidal category with tensor product given by pullback. The quantum Yang–Baxter equation, or more properly the braid equation, is investigated in this setting. A solution of the braid equation in this category is called a “solution” for short. Results of Etingof–Schedler–Soloviev, Lu–Yan–Zhu and Takeuchi on the set-theoretical quantum Yang–Baxter equation are generalized to the context of quivers, with groupoids playing the role of groups. The notion of “braided groupoid” is introduced. Braided groupoids are solutions and are characterized in terms of bijective 1-cocycles. The structure groupoid of a non-degenerate solution is defined; it is shown that it is a braided groupoid. The reduced structure groupoid of a non-degenerate solution is also defined. Non-degenerate solutions are classified in terms of representations of matched pairs of groupoids. By linearization we construct star-triangular face models and realize them as modules over quasitriangular quantum groupoids introduced in papers by M. Aguiar, S. Natale and the author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.