Abstract
The molecular mechanism of the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate was evaluated in the framework of the Molecular Electron Density Theory. It was found that independently of the nature of the substituent within the azide molecule, the cycloaddition process is realized via a polar but single-step mechanism. All attempts of localization as postulated earlier by Abu-Orabi and coworkers' zwitterionic intermediates were not successful. At the same time, the formation of zwitterions with an "extended" conformation is possible on parallel reaction paths. The ELF analysis shows that the studied cycloaddition reaction leading to the 1,4-triazole proceeds by a two-stage one-step mechanism. It also revealed that both zwitterions are created by the donation of the nitrogen atom's nonbonding electron densities to carbon atoms of ethyl propiolate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.