Abstract
Motivated by random evolutions which do not start from equilibrium, in a recent work, Peligrad and Volný (J Theor Probab, 2018. arXiv:1802.09106 ) showed that the central limit theorem (CLT) holds for stationary ortho-martingale random fields when they are started from a fixed past trajectory. In this paper, we study this type of behavior, also known under the name of quenched CLT, for a class of random fields larger than the ortho-martingales. We impose sufficient conditions in terms of projective criteria under which the partial sums of a stationary random field admit an ortho-martingale approximation. More precisely, the sufficient conditions are of the Hannan’s projective type. We also discuss some aspects of the functional form of the quenched CLT. As applications, we establish new quenched CLTs and their functional form for linear and nonlinear random fields with independent innovations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.