Abstract

It is shown that a Dirac(-type) equation for a rank-two bi-spinor field ψph on Minkowski (configuration) spacetime furnishes a Lorentz-covariant quantum-mechanical wave equation in position-space representation for a single free photon. This equation does not encounter any of the roadblocks that have obstructed previous attempts (by various authors) to formulate a quantum-mechanical photon wave equation. In particular, it implies that the photon wave function ψph yields conserved non-negative Born-rule-type quantum probabilities and that its probability current density four-vector transforms properly under Lorentz transformations. Moreover, the eigenvalues of the pertinent photon Dirac Hamiltonian and the vector eigenvalues of the photon momentum operator yield the familiar Einstein relations E = ℏω and p = ℏk, respectively. Furthermore, these spin-1 wave modes are automatically transversal without the need of an additional constraint on the initial data. Some comments on other proposals to set up a photon wave equation are supplied as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.