Abstract

To assess the importance of heterotrophic microplankton in the Wadden Sea, seasonal distribution and biomass of the main subgroups, that is, heterotrophic dinoflagellates, (separated into thecate and athecate forms), tintinnids, and aloricate ciliates, were studied in 1989 and 1990 in a total of six surveys covering the whole area of the northern German Wadden Sea. Heterotrophic microplankton biomass exhibited high spatial and temporal variation, ranging from 0 μg Cl−1 to 66 μg Cl−1, with maximum concentrations in spring., Mean stocks were lowest in winter (1.6 μg Cl−1) and highest in spring (11.7 μg Cl−1); intermediate concentrations were found in summer (8.5 μg Cl−1). In winter, the heterotrophic microplankton was dominated by tintinnids. In spring and summer, aloricate ciliates and dinoflagellates made up the largest part of the biomass. A pronounced feature was a shift within the dinoprotist group from athecate to thecate forms in summer. In spring, maxima of athecate dinoflagellate carbon were associated with blooms ofPhaeocystis globosa, indicating a close trophic relationship. From rough estimates of the daily grazing potential, based on microheterotrophic biomass and conversion factors from the literature, it may be concluded that heterotrophic microplankton temporarily share a main role in the transfer of food and energy to higher trophic levels within the pelagic system of the Wadden Sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.