Abstract

Second harmonic generation (SHG) allows for the examination of collagen structure in collagenous tissues. Collagen is a fibrous protein found in abundance in the human body, present in bones, cartilage, the skin, and the cornea, among other areas, providing structure, support, and strength. Its structural arrangement is deeply intertwined with its function. For instance, in the cornea, alterations in collagen organization can result in severe visual impairments. Using SHG imaging, various metrics have demonstrated the potential to study collagen organization. The discrimination between healthy, keratoconus, and crosslinked corneas, assessment of injured tendons, or the characterization of breast and ovarian tumorous tissue have been demonstrated. Nevertheless, these metrics have not yet been objectively evaluated or compared. A total of five metrics were identified and implemented from the literature, and an additional approach adapted from texture analysis was proposed. In this study, we analyzed their effectiveness on a ground-truth set of artificially generated fibrous images. Our investigation provides the first comprehensive assessment of the performance of multiple metrics, identifying both the strengths and weaknesses of each approach and providing valuable insights for future applications of SHG imaging in medical diagnostics and research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.