Abstract

AbstractThe conversion of pollutants in automotive catalytic converters is influenced by a number of physical and chemical processes that take place in the gaseous and solid phases as the exhaust gases flow through the converter. A detailed understanding of the complex processes involving flow dynamics, heat and mass transport and heterogeneous surface reactions is of crucial importance to improve the converter design. The main objective of the present study is to quantify the magnitudes of the external and internal mass transfer as well as chemical reaction limiting processes as a function of the converter operating temperature. To this end, experimental data, obtained for a three way catalyst (TWC) under real world operating conditions, are analyzed and compared against analytical expressions that allow for the quantification of the different limiting processes involved. The results demonstrate that (i) the external mass transfer resistance overlaps the reaction resistance only at moderate operating temperatures and not immediately above the ignition temperature as generally considered in the literature, (ii) the transport phenomena (external and internal mass transfer) represents 90% of the total resistance for temperatures higher than 792 K, (iii) the internal mass transfer in the porous washcoat presents a larger resistance than the external mass transfer from the bulk fluid to the washcoat wall even at high operating temperatures, and (iv) based on the quantification of the individual resistances as a function of the TWC operating temperature, it was demonstrated both the influence of the substrate cell density and of the effective diffusivity on the TWC conversions. © 2010 American Institute of Chemical Engineers AIChE J, 2011

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call