Abstract

This paper addresses the problem of quantification and propagation of uncertainties associated with dependence modeling when data for characterizing probability models are limited. Practically, the system inputs are often assumed to be mutually independent or correlated by a multivariate Gaussian distribution. However, this subjective assumption may introduce bias in the response estimate if the real dependence structure deviates from this assumption. In this work, we overcome this limitation by introducing a flexible copula dependence model to capture complex dependencies. A hierarchical Bayesian multimodel approach is proposed to quantify uncertainty in dependence model-form and model parameters that result from small data sets. This approach begins by identifying, through Bayesian multimodel inference, a set of candidate marginal models and their corresponding model probabilities, and then estimating the uncertainty in the copula-based dependence structure, which is conditional on the marginals and their parameters. The overall uncertainties integrating marginals and copulas are probabilistically represented by an ensemble of multivariate candidate densities. A novel importance sampling reweighting approach is proposed to efficiently propagate the overall uncertainties through a computational model. Through an example studying the influence of constituent properties on the out-of-plane properties of transversely isotropic E-glass fiber composites, we show that the composite property with copula-based dependence model converges to the true estimate as data set size increases, while an independence or arbitrary Gaussian correlation assumption leads to a biased estimate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.