Abstract
We consider Salim Rashid's asymptotic version of David Schmeidler's theorem on the purification of Nash equilibria. We show that, in contrast to what is stated, players' payoff functions have to be selected from an equicontinuous family in order for Rashid's theorem to hold. That is, a bound on the diversity of payoffs is needed in order for such asymptotic results to be valid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.