Abstract

In the paper, the stochastic stability of the binary airfoil subject to the effect of a bounded noise is studied through the determination of moment Lyapunov exponents. The noise excitation here is often used to model a realistic model of noise in many engineering application. The partial differential eigenvalue problem governing the moment Lyapunov exponent is established. Via the Feller boundary classification, the types of singular points are discussed here, and for the system discussed, the singular points only exist in end points. The fundamental methods used are the perturbation approach and the Green's functions method. With these methods, the second-order expansions of the moment Lyapunov exponents are obtained, which are shown to be in good agreement with those obtained using Monte Carlo simulation. The effects of noise and system parameters on the moment Lyapunov exponent and the stochastic stability of the binary airfoil system are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.