Abstract

The Hermite-Gauss basis functions have been extensively employed in classical and quantum optics due to their convenient analytic properties. A class of multivariate Hermite-Gauss functions, the anisotropic Hermite-Gauss functions, arise by endowing the standard univariate Hermite-Gauss functions with a positive definite quadratic form. These multivariate functions admit useful applications in optics, signal analysis and probability theory, however they have received little attention in literature. In this paper, we examine the properties of these functions, with an emphasis on applications in computational optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.