Abstract

We have fabricated GaP supersaturated with Ti by means of ion implantation and pulsed-laser melting to obtain an intermediate band material with applications in photovoltaics. This material has a strong sheet photoconductance at energies below the bandgap of GaP and it seems to be passivated by a Ga defective GaPO oxide layer during the laser process. Passivation is consistently analyzed by sheet photoconductance and photoluminescence measurements. We report on the structural quality of the resulting layers and analyze the energy of the new optical transitions measured on GaP:Ti. A collapse found in the sheet photoconductance spectra of GaP:Ti samples fabricated on undoped substrates is explained by the negative photoconductivity phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call