Abstract
Traceability schemes which are applied to the broadcast encryption can prevent unauthorized parties from accessing the distributed data. In a traceability scheme a distributor broadcasts the encrypted data and gives each authorized user unique key and identifying word from selected error-correcting code for decrypting. The following attack is possible in these schemes: groups of c malicious users are joining into coalitions and gaining illegal access to the data by combining their keys and identifying codewords to obtain pirate key and codeword. To prevent this attacks, classes of error-correcting codes with special c-FP and c-TA properties are used. In particular, c -FP codes are codes that make direct compromise of scrupulous users impossible and c -TA codes are codes that make it possible to identify one of the aackers. We are considering the problem of evaluating the lower and the upper boundaries on c, within which the L-construction algebraic geometric codes have the corresponding properties. In the case of codes on an arbitrary curve the lower bound for the c-TA property was obtained earlier; in this paper, the lower bound for the c-FP property was constructed. In the case of curves with one infinite point, the upper bounds for the value of c are obtained for both c-FP and c-TA properties. During our work, we have proved an auxiliary lemma and the proof contains an explicit way to build a coalition and a pirate identifying vector. Methods and principles presented in the lemma can be important for analyzing broadcast encryption schemes robustness. Also, the c-FP and c-TA boundaries monotonicity by subcodes are proved.
Highlights
Traceability schemes which are applied to the broadcast encryption can prevent unauthorized parties from accessing the distributed data
In a traceability scheme a distributor broadcasts the encrypted data and gives each authorized user unique key and identifying word from selected error-correcting code for decrypting. e following a ack is possible in these schemes: groups of malicious users are joining into coalitions and gaining illegal access to the data by combining their keys and identifying codewords to obtain pirate key and codeword
In the case of codes on an arbitrary curve the lower bound for the -TA property was obtained earlier; in this paper, the lower bound for the -FP property was constructed
Summary
Ниже будем использовать стандартные обозначения из теории кодирования (см. [8]). Пусть – линейный [ , , ] код, , ∈ ,. Что если для кода выполнено -TA-свойство, то для любого вектора ∈ ни одна коалиция мощности не более не сможет комбинированием элементов своих кодовых векторов сгенерировать потомка , находящегося ближе к , чем к этой коалиции. Для того, чтобы доказать, что для кода не выполнено -TAсвойство, достаточно построить кодовый вектор , коалицию 0 мощности максимум и потомка этой коалиции такие, чтобы расстояние от этого потомка до было меньше, чем расстояние от этого потомка до любого из членов коалиции. Линейный код будем называть -FP кодом ([1], определение 1.1), если выполняется следующее условие:. Если для кода выполнено -FP-свойство, то ни одна коалиция мощности не более не сможет комбинированием элементов своих кодовых векторов сгенерировать другой кодовый вектор. Для того, чтобы доказать, что для кода не выполнено -FP-свойство, достаточно построить коалицию мощности не более и кодовый вектор такие, чтобы этот кодовый вектор являлся потомком этой коалиции. Для кодов Рида-Маллера аналогичная лемма доказана в [9] (теоремы 2 и 4)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.