Abstract

In this paper the propagation of plane and circular crested viscothermoelastic waves in a homogeneous isotropic, Kelvin–Voigt type viscoelastic thermally conducting, plate sandwiched between inviscid liquid layers is investigated in the context of classical and non-classical theories of thermoelasticity. The secular equations for the symmetric and skew-symmetric modes of plane and circular crested waves are derived in closed form and isolated mathematical conditions. It is noticed that the motion for both the plane and cylindrical waves in plates is governed by Rayleigh–Lamb-type secular equations. The secular equations for thin plate and short wave length waves are also obtained and discussed. The results in the absence of fluid loading, coupled and uncoupled theories of thermoelasticity have been obtained as particular cases from the derived secular equations. The dispersion curves, attenuation profiles and specific loss in case of symmetric and skew-symmetric wave modes are also presented graphically for a polymethyl methacrylate material plate under fluid loadings. The effect of dissipation due to viscosity is noticed to be quite significant and clearly visible from various curves in the graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.