Abstract

This paper focuses on one of the metrological properties of DIC, namely displacement resolution. More specifically, the study aims to validate, in the environment of an experimental mechanics laboratory, a recent generalized theoretical prediction of displacement resolution. Indeed, usual predictive formulas available in the literature neither take into account sub-pixel displacement, nor have been validated in an experimental mechanics laboratory environment, nor are applicable to all types of DIC (Global as well as Local). Here, the formula used to account for sub-pixel displacements is first recalled, and an accurate model of the sensor noise is introduced. The hypotheses required for the elaboration of this prediction are clearly stated. The formula is then validated using experimental data. Since rigid body motion between the specimen and the camera impairs the experimental data, and since sensor noise is signal-dependent, particular tools need to be introduced in order to ensure the consistency between the observed image noise and the model on which prediction hypotheses are based. Pre-processing tools introduced for another full-field measurement approach, namely the Grid Method, are employed to address these issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.