Abstract
ABSTRACTTo increase the safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel has become a valuable tool. One recent successful forward looking approach is based on the excitation and registration of tunnel surface‐waves. For further development and for finding optimal acquisition geometries it is important to study the propagation characteristics of tunnel surface‐waves. 3D seismic finite difference modelling and analytic solutions of the wave equation in cylindrical coordinates reveal that at higher frequencies, i.e., if the tunnel‐diameter is significantly larger than the wavelength of surface‐waves, these surface‐waves can be regarded as Rayleigh‐waves confined to the tunnel wall and following helical paths along the tunnel axis. For lower frequencies, i.e., when the tunnel surface‐wavelength approaches the tunnel‐diameter, the propagation characteristics of these surface‐waves are similar to S‐waves. We define the surface‐wave wavelength‐to‐tunnel diameter ratio w to be a gauge for separating Rayleigh‐ from S‐wave excitation. For w > 1.2 tunnel surface‐waves behave like S‐waves, i.e. their velocity approaches the S‐wave velocity and the particle motion is linear and perpendicular to the ray direction. For w < 0.6 they behave like Rayleigh‐waves, i.e., their velocity approaches the Rayleigh‐wave velocity and they exhibit elliptical particle motion. For 0.6 < w < 1.2 a mixture of both types is observed. Field data from the Gotthard Base Tunnel (Switzerland) show both types of tunnel surface‐waves and S‐waves propagating along the tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.