Abstract
A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in H, H g> for every g \in G . Some problems in finite group theory, combinatorics, and permutation group theory were solved in terms of pronormality. In 2012, E. Vdovin and the third author conjectured that the subgroups of odd index are pronormal in finite simple groups. In this paper we disprove their conjecture and discuss a recent progress in the classification of finite simple groups in which the subgroups of odd index are pronormal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.