Abstract

Let S be either a free group or the fundamental group of a closed hyperbolic surface. We show that if G is a finitely generated residually-p group with the same pro-p completion as S, then two-generated subgroups of G are free. This generalises (and gives a new proof of) the analogous result of Baumslag for parafree groups. Our argument relies on the following new ingredient: if G is a residually-(torsion-free nilpotent) group and H≤G\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H\\le G$$\\end{document} is a virtually polycyclic subgroup, then H is nilpotent and the pro-p topology of G induces on H its full pro-p topology. Then we study applications to profinite rigidity. Remeslennikov conjectured that a finitely generated residually finite G with profinite completion G^≅S^\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{G}}\\cong {\\hat{S}}$$\\end{document} is necessarily G≅S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G\\cong S$$\\end{document}. We confirm this when G belongs to a class of groups Hab\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {H}_\ extbf{ab}}$$\\end{document} that has a finite abelian hierarchy starting with finitely generated residually free groups. This strengthens a previous result of Wilton that relies on the hyperbolicity assumption. Lastly, we prove that the group S×Zn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S\ imes \\mathbb {Z}^n$$\\end{document} is profinitely rigid within finitely generated residually free groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.