Abstract

The DC design considerations associated with optimizing epitaxial Si- and SiGe-base bipolar transistors for the 77-K environment are examined in detail. Transistors and circuits were fabricated using four different vertical profiles, three with a graded-bandgap SiGe base, and one with a Si base for comparison. All four epitaxial-base profiles yield transistors with DC properties suitable for high-speed logic applications in the 77-K environment. The differences between the low-temperature DC characteristics of Si and SiGe transistors are highlighted both theoretically and experimentally. A performance tradeoff associated with the use of an intrinsic spacer layer to reduce parasitic leakage at low temperatures and the consequent base resistance degradation due to enhanced carrier freeze-out is identified. Evidence that a collector-base heterojunction barrier effect severely degrades the current drive and transconductance of SiGe-base transistors operating at low temperatures is provided. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call