Abstract

Isolation theorems for the minima of factorizable homogeneous ternary cubic forms and of indefinite ternary quadratic forms of a new strong type are proved. The problems whether there exist such forms with positive minima other than multiples of forms with integer coefficients are shown to be equivalent to problems in the geometry of numbers of a superficially different type. A contribution is made to the study of the problem whether there exist real <j>, ijr such that x(f>x—y | y[rx — z | has a positive lower bound for all integers x > 0, y , z . The methods used have wide validity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.