Abstract

In the approximation of linear elliptic operators in mixed form, it is well known that the so-called inf-sup and ellipticity in the kernel properties are sufficient (and, in a sense to be made precise, necessary) in order to have good approximation properties and optimal error bounds. One might think, in the spirit of Mercier-Osborn-Rappaz-Raviart and in consideration of the good behavior of commonly used mixed elements (like Raviart-Thomas or Brezzi-Douglas-Marini elements), that these conditions are also sufficient to ensure good convergence properties for eigenvalues. In this paper we show that this is not the case. In particular we present examples of mixed finite element approximations that satisfy the above properties but exhibit spurious eigenvalues. Such bad behavior is proved analytically and demonstrated in numerical experiments. We also present additional assumptions (fulfilled by the commonly used mixed methods already mentioned) which guarantee optimal error bounds for eigenvalue approximations as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.