Abstract

Red blood cells (RBC) are known to exhibit non symmetric (slipper) shapes in the microvasculature. Vesicles have been recently used as a model for RBC and numerical simulations proved the existence of slipper shapes under Poiseuille flow (both in unconfined and confined geometry). However, in our recent numerical simulations the transition from symmetric (parachute) shape to the slipper one was found to take place upon decreasing the flow strength, while experiments on RBCs showed the contrary. In this work we show that if the viscosity contrast (ratio between the internal over external fluid viscosities) is different from unity, as is the case with RBCs, the transition from parachute to slipper shape occurs upon increasing the flow strength, in agreement with experiments. We provide the phase diagram of shapes in the microcirculation. The slipper is found to have a higher speed than the parachute (for the same parameters), that we believe to be the basic reason for its prevailing in the microvasculature. We provide a simple geometrical picture that explains the slipper flow efficiency over the parachute one. Finally, we show that there exists in parameter space regions of co-existence of slipper/parachute shapes and suggest simple experimental protocols to test these findings. The coexistence of shapes seems to be supported by experiments, though a systematic experimental study is lacking. A potential application of this work is to guide designing flow-based experiments in order to link the shape of RBCs to pathologies affecting cell deformability, such as sickle cell diseases, malaria, and those affecting blood hematocrit, as in polycythemia vera disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.