Abstract

A rational parametrization of an algebraic curve (resp. surface) establishes a rational correspondence of this curve (resp. surface) with the affine or projective line (resp. affine or projective plane). This correspondence is a birational equivalence if the parametrization is proper. So, intuitively speaking, a rational proper parametrization trace the curve or surface once. We consider the problem of computing a proper rational parametrization from a given improper one. For the case of curves we generalize, improve and reinterpret some previous results. For surfaces, we solve the problem for some special surface's parametrizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.