Abstract

The implementation of both vibration source characterisation and sub-structure coupling/decoupling procedures rely on the complete description of a coupling interface, that is, the inclusion of coupling forces in all significant degrees of freedom (DoFs). However, it is not straight-forward to establish which DoFs are required in the description. E.g. is it necessary to include moments and/or in-plane forces? This is an important question as an incomplete description will lead to an erroneous representation of the dynamics. However, there are currently no methods of quantifying the completeness of an interface description. In this paper an experimental procedure is described for the assessment of interface completeness. Based on the theoretical blocking of DoF subsets, a relation is presented that allows for the contribution of an unknown DoF to be established. Further, a coherence style criterion is proposed to estimate the completeness of a given interface description. This criterion may be used to check whether sufficient coupling DoFs have been included in both source characterisation and sub-structure coupling/decoupling procedures. Numerical and experimental examples are provided to illustrate the concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.