Abstract

Let G be a finite group. We define the prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. Recently M. Hagie [5] determined finite groups G satisfying Γ(G) = Γ(S), where S is a sporadic simple group. Let p > 3 be a prime number. In this paper we determine finite groups G such that Γ(G) = Γ(PSL(2, p)). As a consequence of our results we prove that if p > 11 is a prime number and p ≢ 1 (mod 12), then PSL(2, p) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.