Abstract

In order to allow more reliable predictions on the lower head response under core melt-down conditions, the temperature distribution has been analysed including the natural convection in the corium pool. Furthermore, the mechanical models and the failure criteria have been improved based on the RUPTHER and FASTHER experiments where typical temperature gradients are simulated. Lower head local melting as well as corium crust development has been addressed in the CORVIS experiments studying the contact between an alumina/iron thermite and a thick steel plate. The upper head loading by corium impact due to a postulated in-vessel steam explosion has been investigated by the BERDA experiments. Similarity rules were considered such that the results can be directly converted to reactor conditions. Based on these investigations admissible steam explosion energy releases are determined which the upper head can carry. If these limits are not exceeded the reactor containment cannot be endangered by broken head fragments. To provide the necessary basic data, mechanical material tests have been performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.