Abstract

AbstractMany laboratory studies have shown the beneficial effects of weld improvement methods on the fatigue strength of welded details. However, no structural codes systematically include weld improvement methods in detail classification. The purpose of this paper is to discuss the possibilities of using these methods in practice on either new or existing structures. This paper provides the reader with practical rules for designing and computing the fatigue strength of improved welded joints. A computation method based on the concept of effective stress range is introduced to model the effects of peening improvement methods on fatigue strength. For the most popular improvement methods, the fatigue strength of improved details can be deduced from the extensive existing database of full‐scale test results. However, for non‐classified details, or when fabrication and improvement processes require validation, testing of the improved details is the only method available to guarantee the fatigue strength of a particular detail. In this paper a recent application of validation through testing in the case of longitudinal attachments is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.