Abstract

Faster than Nyquist (FTN) signaling is a nonorthogonal transmission scheme, in which the pulses appear faster than the rate known from the Nyquist criterion. The FTN signaling offers a higher data rate compared to Nyquist signaling but results in intersymbol interference due to the violation of the Nyquist theorem. In this paper, we investigate the FTN system performance in terms of bit error rate (BER), peak-to-average power ratio (PAPR), spectral efficiency and compare these with Nyquist signaling given that both systems have the same pulse shape and data rate. Simulation results confirm that FTN signaling system has higher spectral efficiency than the Nyquist signaling system. Furthermore, FTN signaling offers benefits in terms of BER and PAPR by using a pulse shaping filter with a large excess bandwidth factor. The PAPR and BER gains achieved by FTN increase with rising the excess bandwidth factor of the applied pulse shape. In the case of using appropriate pulse shape with high energy concentration in time domain, the PAPR and BER gains given by FTN can be achieved more than 2 dB and 3 dB, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call