Abstract

This paper offers a study that compares the nature of Pr3+ luminescence in crystalline and glass modifications of LaB3O6, LiLaP4O12 and SrB4O7. In the crystalline derivative of these materials, the crystal-field split Pr3+ 4f15d1 state is higher in energy than the 1S0 state. The resulting energy level structure permits the observation of the Pr3+ 1S0→1I6 emission transition and the production of two photons for every absorbed UV photon, a process which is referred to as Photon Cascade Emission. In the corresponding glass derivatives, the Pr3+ 4f15d1 lies below the 1S0 state with the consequence that the emission is dominated by the interconfigurational (broad-band) Pr3+ 4f15d1→4f2 transition. The reason for this is traced to increased strength of the crystalline field at the Pr3+ site in the glass phase. The increased crystal-field strength is traceable to decreased local coordination number and to shorter Pr3+–O2− bond distances. In this paper we also analyze the results of the Pr3+ ion luminescence in fluoride, oxyfluoride, borate and phosphate glasses. With the exception of one pure fluoride glass (ZBLAN), the Pr3+ luminescence in all these glasses is dominated by the interconfigurational Pr3+ 4f15d1→4f2 emission transition. It is pointed out that under broad-band excitation, emission from the Pr3+ 1S0 state has yet to be observed in an oxide based glass (phosphates and borates).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.