Abstract

We propose a new method to accelerate the convergence of optimization algorithms. This method simply adds a power coefficient $\gamma\in[0,1)$ to the gradient during optimization. We call this the Powerball method and analyze the convergence rate for the Powerball method for strongly convex functions. While theoretically the Powerball method is guaranteed to have a linear convergence rate in the same order of the gradient method, we show that empirically it significantly outperforms the gradient descent and Newton's method, especially during the initial iterations. We demonstrate that the Powerball method provides a $10$-fold speedup of the convergence of both gradient descent and L-BFGS on multiple real datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.