Abstract

We show how quantum tamper-proof devices (QTPD's) can be used to attack and to develop security protocols. On one hand, we prove that it is possible to transfer proofs of zero-knowledge protocols using QTPD's. This attack can be extended to other security schemes where privacy is important. On the other hand, we present a fair contract signing protocol using QTPD's where there is no communication with Judge during the exchange phase (which is impossible classically). In the latter case, we make use of decoherence in the quantum state of the QTPD to implement a global clock over the asynchronous network. QTPD's seem to be possible to implement with existing quantum hardware, due to the fact that it is hard to isolate quantum memory from interference. These theoretical results contribute to justify the implementation of QTPD's.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.