Abstract

We discuss multidoubling methods for efficient elliptic scalar multiplication. The methods allows computation of 2k P directly from P without computing the intermediate points, where P denotes a randomly selected point on an elliptic curve. We introduce algorithms for elliptic curves with Montgomery form and Weierstrass form defined over finite fields with characteristic greater than 3 in terms of affine coordinates. These algorithms are faster than k repeated doublings. Moreover, we apply the algorithms to scalar multiplication on elliptic curves and analyze computational complexity. As a result of our implementation with respect to the Montgomery and Weierstrass forms in terms of affine coordinates, we achieved running time reduced by 28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size 160-bit over finite fields with characteristic greater than 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.