Abstract

Generalized radial basis function (RBF) neurons are extensions of the RBF neuron model where the Euclidean norm is replaced by a weighted norm. We study binary-valued variants of generalized RBF neurons and compare their computational power in the Boolean domain with linear threshold neurons. As one of the main results, we show that generalized binary RBF neurons with any weighted norm can compute every Boolean function that is computed by a linear threshold neuron. While this inclusion turns into an equality if the RBF neuron uses the Euclidean norm, we exhibit a weighted norm where the inclusion is proper. Applications of the results yield bounds on the Vapnik–Chervonenkis (VC) dimension of RBF neural networks with binary inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.