Abstract

Temporal logic is often used to describe temporal properties in AI applications. The most popular language for doing so is Linear Temporal Logic (LTL). Recently, LTL on finite traces, LTLf, has been investigated in several contexts. In order to reason about LTLf, formulas are typically compiled into deterministic finite automata (DFA), as the intermediate semantic representation. Moreover, due to the fact that DFAs have canonical representation, efficient minimization algorithms can be applied to maximally reduce DFA size, helping to speed up subsequent computations. Here, we present a thorough investigation on two classical minimization algorithms, namely, the Hopcroft and Brzozowski algorithms. More specifically, we show how to apply these algorithms to semi-symbolic (explicit states, symbolic transition functions) automata representation. We then compare the two algorithms in the context of an LTLf-synthesis framework, starting from LTLf formulas. While earlier studies on comparing the two algorithms starting from randomly-generated automata concluded that neither algorithm dominates, our results suggest that starting from LTLf formulas, Hopcroft's algorithm is the best choice in the context of reactive synthesis. Deeper analysis explains why the supposed advantage of Brzozowski's algorithm does not materialize in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.