Abstract
For a given odd prime $p$, we investigate the power graphs of three classes of finite groups: the elementary abelian groups of exponent $p$, and the extra special groups of exponents $p$ or $p^2$. We show that these power graphs are Eulerian for every $p$. As a corollary, we describe two classes of non-isomorphic groups with isomorphic power graphs. In addition, we prove that the clique graphs of the power graphs of two considered classes are complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.