Abstract

<p>GGOS-SIM-2, funded by the German Research Foundation (DFG), is a research collaboration project between the German Research Center for Geosciences (GFZ) and the Technische Universität Berlin (TUB). Simulations are utilized to examine the potential of co-location in space, called space ties, of the four main space geodetic techniques, i.e. DORIS, GNSS, SLR and VLBI to achieve the requirements of the Global Geodetic Observing System (GGOS) for a global terrestrial reference frame (TRF), 1 mm accuracy and 1 mm / decade long-term stability. The simulations are performed for six fictional orbit scenarios, including proposed missions GRASP (USA) and E-GRASP (EU), and expanded by a variation of the E-GRASP orbit with lower eccentricity as well as three higher orbiting circular orbits with different inclination over a time span of seven years. For most realistic simulations, we first evaluated real DORIS, GPS and SLR observations to the satellites LAGEOS 1 und 2, Ajisai, LARES, Starlette, Stella, ENVISAT, Jason 1 und 2, Sentinel 3A and B using Precise Orbit Determination (POD), to get detailed information about the individual station and receiver accuracy, availability and further technique-specific effects. Then, we generate simulated single-technique TRF solutions based on existing missions and add the co-location-in-space satellite in the six orbit scenarios. In order to quantify the effects of the different scenarios, we examine the added value w.r.t. the existing missions in terms of origin and scale and of formal errors of the station coordinates and Earth rotation parameters. We also investigate the impact of systematic errors on the derived orbits on the final TRF. The different techniques show individual advantages regarding the respective orbit parameters. For instance, a higher eccentricity of the orbit seems to lead to improved accuracy of length-of-day (LOD) from SLR. The results will help to find the best trade-off for a satellite that co-locates all four techniques in space towards a GGOS-compliant TRF and Earth rotation parameters.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.