Abstract
The mathematical description of elastoplasticity is a highly complex problem due to the possible change from elastic to elasto-plastic behavior (and vice-versa) as a function of the loading path. Advanced physics-based plasticity models usually feature numerous internal variables (often of tensorial nature) along with a set of evolution equations and complementary conditions. In the present work, an attempt is made to come up with a machine-learning based model that can replicate the predictions anisotropic Yld2000-2d model with homogeneous anisotropic hardening (HAH). For this, a series of modeling problems of increasing complexity is formulated and sequentially addressed using neural network models. It is demonstrated that basic fully-connected neural network models can capture the characteristic non-linearities in the uniaxial stress-strain response such as the Bauschinger effect, permanent softening or latent hardening. A neural network with gated recurrent units (GRUs) and fully-connected layer is proposed for the modeling of plane stress plasticity for arbitrary loading paths. After training and testing the model through comparison with the Yld2000-2d/HAH model, the recurrent neural network model is also used to model the multi-axial stress-strain response of a two-dimensional foam. Here, the comparison with the results from unit cell simulations provided another validation of the proposed data-driven modeling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.