Abstract
Single-basin tidal range power plants have the advantage of predictable energy outputs, but feature non-generation periods in every tidal cycle. Linked-basin tidal power systems can reduce this variability and consistently generate power. However, as a concept the latter are under-studied with limited information on their performance relative to single-basin designs. In addressing this, we outline the basic principles of linked-basin power plant operation and report results from their numerical simulation. Tidal range energy operational models are applied to gauge their capabilities relative to conventional, single-basin tidal power plants. A coastal ocean model (Thetis) is then refined with linked-basin modelling capabilities. Simulations demonstrate that linked-basin systems can reduce non-generation periods at the expense of the extractable energy output relative to conventional tidal lagoons and barrages. As an example, a hypothetical case is considered for a site in the Severn Estuary, UK. The linked-basin system is seen to generate energy 80–100% of the time over a spring-neap cycle, but harnesses at best ≈ 30% of the energy of an equivalent-area single-basin design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.