Abstract

Tungsten carbide and cobalt are the main components of hard metal alloy while other metals such as chromium, niobium, tantalum, titanium and vanadium are sometimes added in smaller amounts. Exposure to hard metal dusts can induce a lung fibrosis with cobalt playing a major role. In order to provide information on the role that each metal may have in causing this disease, determination of the total content and the distribution of inhaled metals in lung tissue of hard metal workers is of paramount importance. However, samples such as transbronchial biopsy and bronchoalveolar lavage (BAL), often used in the medical diagnosis of pneumoconiosis, only allow for a small amount of material. This calls for sensitive and accurate analytical procedures for microdetermination and distribution of metals in pulmonary tissue and cellular material, such as macrophages. This work proposes a combination of sophisticated analytical techniques such as neutron activation analysis (NAA), currently applied to the determination of the total concentration of more than 30 elements in biological specimens, and PIXE analysis, particularly microPIXE, which has a great potential for microdistribution analysis in small biological samples. Principles and perspectives for the combined use of these techniques for the analysis of human tissue are outlined and discussed. NAA: determination of hard metals in lung tissue are carried out by neutron irradiation (2 × 10 14 neutrons cm −2 s −1) in the HFR reactor of Petten. After neutron activation, radiochemical separations of 60Co, 187W, 182Ta, 51Cr followed by computer-based high resolution gamma ray spectrometry allow the measurement of these elements in pulmonary tissues with sensitivities ranging from 10 −4 μg (Cr) to 10 −6 μg (W). PIXE: this technique is multielemental and of relatively high sensitivity (μg/g) even in small total sample masses of from 10 to 100 μg, thus allowing the analysis of parts of needle biopsies. Whereas PIXE has been successfully applied to many medical problems, its usefulness is limited in the total samples analysis for cobalt-related hard metal disease, due to the low levels of cobalt in tissue combined with severe element interferences from the generally more abundant metal, iron. Nevertheless, microPIXE, a special variety of the method scanning over the sample with a focussed ion beam of about 2 × 2 μm 2, could complement the NAA findings in total samples in the sense of achieving a microdistribution analysis of hard metals (including cobalt) in suitable thin tissue sections. The availability of specialized facilities at the JRC such as the powerful HFR reactor (Petten), the NAA laboratories (Ispra) and the microPIXE facility (Geel) could represent a European ‘reference pole’ for the study of metals in tissues of hard metal diseased subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.