Abstract
This paper aims to illustrate the effect of the impact damage on fatigue behavior of CF/PEEK-titanium hybrid laminates. To achieve this end, a fatigue life model was proposed to predict the S–N curves of the laminates at various initial impact energy levels and stress ratios based on the energy dissipation approach. The energy dissipation behavior of the laminates during fatigue loading under different experimental conditions was analyzed through a large amount of post-impact fatigue tests, and the correlation between the initial impact damage and the total fatigue dissipation energy was determined. The full-field axial strain distribution of the titanium layer on the impacted side of the laminate was characterized in terms of initial impact energy level and maximum stress using digital image correlation, and then the post-impact fatigue failure mechanism of CF/PEEK-Ti hybrid laminates was summarized. Finally, the validity of the proposed model was verified by fatigue tests under other conditions of stress ratio and impact energy level. It is worth mentioning that the proposed model is also applicable to other types of FMLs, and can accurately predict the residual fatigue life of laminates after impact with only one set of S–N curve data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.