Abstract

The posterior-probability estimate of the classification error rate of some nonparametric classification rules is studied. The variance of the estimator is shown to have same remarkable distribution-free properties for the k-nearest neighbor, kernel, and histogram rules. We also investigate the bias of the estimate and establish its consistency and upper bounds. The version of the estimate calculated from an independent set of unclassified patterns is also considered.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.