Abstract

Laser-microwave double-resonance techniques in radiofrequency (rf) traps and Penning traps represent a powerful tool to determine hyperfine structure splittings as well as nuclear g factors to high precision. While hyperfine structure constants have been determined in a number of cases below the 10 −10 level of precision, electronic g factors have been measured to 10 −7 and there are good prospects of obtaining similar accuracy for g l . Moreover sensitive techniques have been developed for injection of ions from outside the trap. This opens the possibility to determine hyperfine anomalies at least to the 1% level of precision for chains of unstable isotopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.