Abstract

A variety of different experimental results show substantial evidence that the order parameter in high-temperature superconducting copper oxides is not of pure d-wave symmetry, but that an s-wave component exists, which especially shows up in experiments that test the c-axis properties. These findings are modeled theoretically within a two-band model with interband interactions, where the superconducting order parameters in the two bands are allowed to differ in symmetry. It is found that the coupling of order parameters with different symmetries (s+d) leads to substantial enhancements of the superconducting transition temperature Tc as compared to order parameters with only s-wave symmetry. An additional enhancement factor of Tc is obtained from the coupling of the bands to the lattice where moderate couplings favor superconductivity while too strong couplings lead to electron (hole) localization and consequently suppress superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.