Abstract

A method of investigation of the magnetic field structure in subphotospheric layers of the Sun has been developed. The method is based on observations of the torisonal oscillations of single sunspots. Characteristics of the torsional oscillations have been obtained from observations of the longitudinal magnetic field and radial velocities of seven single sunspots in the photospheric line Fe I λ5253 A. The parameters of the torsional oscillations and magnetic tubes in the deep layers have been determined. The radius of the cross section of a magnetic flux tube forming a sunspot is greatest near the Sun’s surface and is approximately equal to the radius of a sunspot umbra. Down to the deeper layers, it decreases quite quickly. The longitudinal electric current appearing in the magnetic tube changes direction. The typical time of the current changes is determined by the period of the torsional oscillations. The intensity of the longitudinal magnetic field in the tube increases with depth. The Alfven wave velocity averaged over the length of a magnetic tube is tens or hundreds of times less than this velocity in a sunspot umbra. It decreases with an increase in the period of oscillations. A decrease in the Alfven wave velocity leads to an increase in the twisting angle of magnetic field lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.