Abstract

Comets with large gas production offer a unique chance to observe a H2-flux of about 105 photon cm−2 s−1 sr−1 (1 Rayleigh) at wavelengths 8497.4 A, 8560.2 A and 8747.9 A-i.e., where photon counting methods are still applicable. In the following it will be shown that population of the vibrational levels, giving rise to these quadrupole overtone transitions, is dominated by photodissociation of methane, and that the emission even of quadrupole lines is not attenuated by collisional quenching. Wavelength scanning by ±1 A is shown to be enough to discriminate between cometary and atmospheric emissions by phase-sensitive subtraction techniques. Solid angle of Ω<10−7 sr has to be used, whence follows that a large ground-based telescope combined with a tilting Fabry-Perotfilter is best suited for detection of the near-infrared H2-emissions at reasonable counting rates and sufficient rejection of the atmospheric background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.