Abstract

A permittivity function suggested in the literature describing a material that exhibits negative permittivity and no loss at a specific frequency (and losses at other frequencies) is analyzed using electrical network theory. An equivalent circuit of the polarization admittance consisting of RLC components is derived. Further, a proof is given showing that if the admittance is lossless at a specific frequency, then all components with losses (resistances) in the circuit have to be short circuited or blocked or virtually disconnected at this frequency by the use of ideal lossless resonant LC circuits. However, in the literature, inductors in metamaterials are associated with inherently lossy metal nanoparticles, hence invalidating the suggested permittivity function unless a lossless inductor at optical frequencies is found or proved possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.